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Abstract 

 
             A family of numerical models, known as the TRIM models, shares the same modeling 
philosophy for solving the shallow water equations.  A characteristic analysis of the shallow 
water equations points out that the numerical instability is controlled by the gravity wave terms 
in the momentum equations and by the transport terms in the continuity equation.  A semi-
implicit finite-difference scheme has been formulated so that these terms and the vertical 
diffusion terms are treated implicitly and the remaining terms explicitly to control the numerical 
stability and the computations are carried out over a uniform finite-difference computational 
mesh without invoking horizontal or vertical coordinate transformations.  An unstructured grid 
version of TRIM model is introduced, or UnTRIM (pronounces as “you trim”), which preserves 
these basic numerical properties and modeling philosophy, only the computations are carried out 
over an unstructured orthogonal grid.  The unstructured grid offers the flexibilities in 
representing complex study areas so that fine grid resolution can be placed in regions of interest, 
and coarse grids are used to cover the remaining domain.  Thus, the computational efforts are 
concentrated in areas of importance, and an overall computational saving can be achieved 
because the total number of grid-points is dramatically reduced.  To use this modeling approach, 
an unstructured grid mesh must be generated to properly reflect the properties of the domain of 
the investigation.  The new modeling flexibility in grid structure is accompanied by new 
challenges associated with issues of grid generation.  To take full advantage of this new model 
flexibility, the model grid generation should be guided by insights into the physics of the 
problems; and the insights needed may require a higher degree of modeling skill.   
 
Introduction 
 
            Based on a characteristic analysis of the shallow water equations, a semi-implicit finite-
difference method of solution was proposed by Casulli (1990). The terms that affect the 
numerical stability are treated implicitly, and the remaining terms are treated explicitly.  This 
formulation not only controls the numerical instability, it also improves the computational 
efficiency.  Since 1990, following the concept of the semi-implicit finite-difference scheme, a 
family of TRIM (Tidal, Residual, and Intertidal Mudflat) models has been systematically 
developed by Casulli and his associates for solving 2D and 3D shallow water equations with or 
without invoking hydrostatic approximations (Casulli and Cheng, 1992; Cheng et al, 1993; 



Casulli and Cattani, 1994; Cheng and Casulli, 1996; Casulli, 1997; Casulli and Stelling, 1998; 
Gross et al, 1998; Casulli, 1999a).  Another unique feature of this family of models is that the 
flow field is solved in the original physical plane without invoking any coordinate 
transformation.  The TRIM family of models has proven to be computationally efficient, and the 
computational efficiency is not compromised due to the fact that the numerical solutions are 
computed in the physical space using a uniform computational grid.   
     
           In contrast, because of the demand on computing resources is commonly quite high for 
most 3-D circulation models, some 3-D models introduce an orthogonal coordinate 
transformation on the x-y plane and a σ-coordinate transformation in the vertical to alleviate 
computing demands.  The computations are performed in the transformed coordinate system 
(e.g., Blumberg and Mellor, 1987; Hamrick and Wu, 1997).  Although the orthogonal coordinate 
transformation does have some advantages for simulating flows in complex domains, the 
orthogonal curvilinear transformation is cumbersome.  There could be numerical errors admitted 
in the computed results inherited from the extra terms stemming from the transformations.  The 
impacts due to these errors are hard to evaluate as some of the mathematical terms do not 
associate directly with any physical meaning.  In order to deal with the usually complex basin 
geometry, the semi-implicit numerical algorithm of TRIM has been extended to an unstructured 
orthogonal grid.  This new model is referred to as UnTRIM and has been reported previously by 
Casulli and Zanolli (1998) and Casulli (1999b).  This new model preserves the advantages of the 
semi-implicit finite-difference formulation for numerical stability and robustness, and the use of 
unstructured grid allows boundary fitting and arbitrary local grid refinements to meet the needs 
of resolving fine spatial resolution in some numerical modeling tasks.   
 
          This paper presents a review and an evaluation of the UnTRIM model and discusses issues 
associated with unstructured computational grids with respect to its robustness and 
computational efficiency.  Finally, the UnTRIM model is applied to San Francisco Bay to test its 
practicality in solving full-scale realistic problems. 
 
Summary of the Numerical Algorithm for UnTRIM  
 
 The governing equations for three-dimensional, baroclinic, environmental flows and 
transport of conservative scalar variables in an estuary include the conservation equations of 
mass and momentum, conservation equations for scalar variables, an equation of state, and a 
kinematic free-surface equation.  The estuarine system is assumed to be sufficiently large so that 
a Coriolis acceleration term (constant coefficient) is included in the momentum equations.  To 
simplify the governing equations, the water is assumed to be incompressible; the pressure is 
assumed to be hydrostatic; and the Boussinesq approximation applies.  In Cartesian coordinates, 
the governing equations are the continuity equation,  
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where Div ( ) is divergence in three-dimension; U is the three-dimensional velocity vector; V is 
the horizontal velocity vector; and ∇•( ) denotes the divergence on the horizontal plane.  The 
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cross-product on the x-y plane.  The transport equation for salt and conservative solutes, Ci, is 
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and an equation of state showing that the water density is a function of salinity and temperature, 
 
 ρ = ρo [1 + αs + β(T − To)2 ]                 ;             (5) 
 
where   α = 7.8 x 10-4     and     β = 7 x 10-6

,  and 
 (u, v, w) are (x, y, z) velocity components; 
 η  is the free-surface elevation measured from a reference datum; 
 ρ and ρo are density and a reference density; 
 f  is Coriolis parameter; 
 νv  and νh are vertical and horizontal eddy viscosity; 
 Kv and Kh are vertical and horizontal eddy diffusivity; 
 Ci are s, T, and conservative solutes, i = 1,2,3,…..; 
 s  is salinity in practical salinity unit (psu); 
 T and To are temperature and a reference temperature in 0C.  
 
 For three-dimensional barotropic flows (constant density), the solute transport equation is 
un-coupled from the momentum equations.  The governing system of equations can be solved 
efficiently by a semi-implicit finite-difference method over a regular computational mesh as 
discussed by Casulli and Cheng (1992) and Casulli and Cattani (1994).  For baroclinic flows, the 
transport equations are coupled with the momentum equations through the density gradient 
terms.  In this case, the baroclinic forcing terms (density gradients) are solved explicitly in the 
momentum equations, and the solutions of the transport variables are solved lagged one time-
step.  The numerical scheme is subject to a weak Courant-Friedrich-Lewy (CFL) stability 
condition due to the explicit treatment of the transport equation, and the baroclinic pressure 
terms in the momentum equations.  It is also subject to a weak stability condition due to the 
explicit treatment of the horizontal diffusion in the momentum equations.  An equilibrium 
turbulence closure is used in the model.  A non-negative bottom friction coefficient is specified 
by, typically, the Manning-Chezy formula, or fitting to a bottom turbulent boundary layer. 
  



Orthogonal unstructured grids  
 
           One of the salient characteristics the TRIM family of models is that the numerical 
solutions are computed in the physical space without any coordinate transformation in the x-, y-, 
or z-directions.  In the numerical algorithm, the stability properties of the governing partial 
differential equations are controlled by using the semi-implicit finite-difference schemes 
(Casulli, 1990; Casulli and Cheng, 1992), the resulting numerical algorithm is robust and 
computationally efficient.  In lieu of a curvilinear coordinate transformation, traditional finite-
difference schemes resort to refining the rectangular finite-difference mesh when a complicated 
domain is encountered in order to resolve the flow distributions in narrow and confined regions.  
Unless a sub-domain formulation is considered, it is necessary to use the same refined finite-
difference mesh for the entire domain of the model.  The resulting fine resolution grids in broad 
and open regions are unnecessary, and the fine computational mesh also consumes a large 
portion of computing resources, which cannot be justified.  Therefore, it is logical to extend the 
semi-implicit finite-difference method in solving the shallow water equations to an unstructured 
grid (Casulli and Zanolli, 1998; Casulli, 1999b; Casulli and Walters, 2000) in which fine grid 
resolutions are used in complex regions, and relatively coarse grids are used in broad and open 
areas.  The combined use of semi-implicit algorithm for stability and an unstructured grid for 
flexibility in solving the shallow water equations comprises the essence of the UnTRIM model.   
 
Issues of Unstructured Grid 
 
         The numerical algorithm of UnTRIM is fundamentally the same as TRIM3D (Casulli and 
Cheng, 1992; Casulli and Cattani, 1994), except the finite-difference treatment of the governing 
partial differential equations is performed over an unstructured grid mesh.  Before discretizing 
the governing equations, the horizontal domain (x, y) is covered by a set of non-overlapping 
convex polygons.  Each side of a polygon is either a boundary line or a side of an adjacent 
polygon.   Moreover, it is assumed that within each polygon there exists a point (hereafter called 
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Figure 1: Orthogonal unstructured grid 

 
center) such that the segment joining the centers of  two adjacent polygons and the side shared 
by the two polygons have a non-empty intersection and are orthogonal to each other (see Figure 
1). One such grid is called an unstructured orthogonal grid (Casulli and Zanolli, 1998; Casulli 
and Walters, 2000).  The center of a polygon does not necessarily coincide with its geometrical 



center.  The special cases of unstructured orthogonal grids include, of course, the rectangular 
finite-difference grids, as well as a grid of uniform equilateral triangles.  In these particular cases 
the center of each polygon can be identified with its geometrical center.  Another example of an 
unstructured orthogonal grid is a set of Delaunay triangles where the triangulation includes only 
acute triangles  (Rebay, 1993).   
 
         In an unstructured grid representation of a domain (x, y), there are Np number of polygons; 
each polygon has an arbitrary number of sides.  For each polygon, the x-y coordinates of the 
vertices that define the polygon must be given.  In addition, every side of the polygon is 
designated a unique number.   The connectivities between polygon and vertices, and the 
connectivities between polygons and sides must be defined for an unstructured grid mesh.  For 
example, the two polygons that share the j-th side of the grid are identified by two indices 
identifying the left polygon, i(j, 1), and the right polygon, i(j, 2).   The positive direction for the 
normal velocity on the face (hereafter called face velocity) on the j-th side is defined to be from 
polygon i(j, 1) to polygon i(j, 2) given in the connectivity relations.   The distance between the 
centers of two adjacent polygons that share the j-th side must be non-zero.  In a three-
dimensional space, the system is extended in the vertical direction by layers of horizontal 
surfaces (z-planes).  Thus, the polygons on the horizontal planes become a stack of prisms whose 
thickness is related to the prescribed layer thickness.  The water surface elevation is assumed to 
be constant within each polygon, and is defined at the center of the polygon.  The velocity 
component normal to each face of a prism is assumed to be constant over the face.  The true 
velocity is defined at each vertex in the middle of each layer.  Spatial distribution of velocity is 
obtained by interpolations.  Finally, the water depth of the basin is specified and assumed 
constant on the sides of polygons. 
 
Numerical Approximation  
 
            A semi-implicit scheme defined above is used in order to obtain an efficient numerical 
algorithm whose stability is independent from the free-surface gravity wave, wind stress, vertical 
viscosity and bottom friction.  Consider a typical polygon, Figure 1, the momentum equation, 
Eq.(3), is finite-differenced in the normal direction of each vertical face along oa, ob, and oc 
directions.  The momentum equation relates the gradient of water surface elevation between 
adjoining polygons and the face velocity on the common face between these polygons.  As stated 
previously, the wind stress, the vertical mixing and the bottom friction are discretized implicitly 
for numerical stability.   
 
            An explicit finite-difference operator is used to account for the contributions from the 
discretization of the advection and horizontal dispersion terms.  A particular form for this 
operator can be given in several ways, such as by using an Eulerian-Lagrangian scheme (Casulli 
and Cheng, 1992).  For stability, the implicitness factor θ has to be chosen in the range ½ ≤ θ ≤ 1  
(Casulli and Cattani, 1994).  Along the vertical direction, a simple finite-difference 
discretization, not necessarily uniform, is adopted.  The vertical space increment is defined as the 
distance between two consecutive level surfaces.  In general, the vertical thickness of the top and 
bottom layers can vary depending on the spatial location and the thickness of the top layer can 
also vary with time. The vertical space increment is allowed to vanish.  In fact this is how the 
wetting and drying of polygons are accomplished. 



 
           The free-surface equation, Eq.(2), is discretized implicitly by the θ-method (Casulli and 
Cattani, 1994; Casulli and Walters, 2000), and only face velocities are needed to complete the 
finite volume balance of total volume in the polygon.  At the center of each polygon, by 
substituting the finite-differenced momentum equations on all faces of a polygon into the 
continuity equation (finite-volume method), the resultant matrix equation governs the water 
surface elevation distribution for the entire domain.  This matrix equation is strongly diagonally 
dominant, symmetric and positive definite; thus its unique solution can be efficiently determined 
by preconditioned conjugate gradient iterations until the residual norm becomes smaller than a 
given tolerance (Golub and van Loan, 1996).   Once the free-surface for the next time level has 
been calculated, the normal velocities on the faces of the prisms are calculated by back 
substitution.  The details of the finite-difference equations are not reproduced here and readers 
are referred to Casulli and Walters (2000).  If baroclinic flows are considered, the transport 
variables are solved explicitly using the velocity field obtained for the next time level.  In 
summary, this numerical algorithm is a combination of the finite-volume method along with a 
semi-implicit consideration of the terms that control the numerical stability. 
 
Examples of Unstructured Grid 
 
Conversion of existing model grids 
          Although polygons of any number of sides can be used, the present version of the 
numerical model code accepts mixed 3- or 4-sided polygons.  If the computational domain is 
covered by uniform rectangles or equilateral triangles then the space difference is second order.  
Since the traditional TRIM3D model (Casulli and Cheng, 1992) uses a regular mesh, that model 
grid is a special case of an unstructured grid acceptable by UnTRIM.   In a regular finite-
difference mesh, the connectivities between the computational nodes, sides, and polygons have a 
systematic pattern, and they need not be defined explicitly.  In contrast, for an unstructured grid 
model, the definitions of the node locations, polygon numbers and side numbers  must be 
supplied to the model.   Even for a regular grid mesh, the connectivities between polygons, sides 
and nodes must be precisely defined.  This, however, can be achieved by a preprocessor program 
that converts the regular finite-difference model depths to an UnTRIM model input file.  One 
such example is the UnTRIM grid converted from a finite-difference grid prepared for a TRIM 
model application in San Francisco Bay (Cheng and Smith, 1998, 2000), Figure 2.   
 
             One of the characteristics for all finite-difference models is that the shoreline boundaries 
are approximated by staircase like boxes; and obviously, in some situations, this approach is not 
a good representation of the boundary.   With exactly the same mesh, the computing resources 
requirements for TRIM and UnTRIM are similar as expected since the numerical algorithms in 
these two models are virtually identical.  Therefore, in this case, the UnTRIM model supercedes 
previous TRIM models in all aspects.   Similarly, a uniform finite-difference model grid 
prepared for other models can be easily converted to an UnTRIM model grid with an appropriate 
conversion program. 
 
                   (a)                                         (b)                                                  (c) 



       
 

Figure 2.  (a) San Francisco Bay Model domain, (b) Suisun Bay region [the zoomed  
in region shown in (a)] where darker colors represent deeper water, and (c) the four-
sided polygons used in the model. 

 
         The only requirement on the computational grids for UnTRIM is that the grids are locally 
orthogonal.  It would be useful to develop a model interface that could convert a general 
orthogonal curvilinear model grid to an unstructured model grid for input to the UnTRIM model.  
The capability of UnTRIM to use essentially the same orthogonal curvilinear grids in 
simulations  
 
                                   (a)                                                                   (b) 

       
      

Figure 3.  (a) The converted ‘unstructured’ orthogonal curvilinear grid of 
Massachusetts Bay, (b) A snap shot of the simulated tidal current pattern near Boston 
Harbor. 

 
is of great interest and importance.  This model grid conversion would allow future comparisons 
of model simulations of the same scenario by UnTRIM and by other models using an orthogonal 
curvilinear grid.   This proposition is investigated using the Massachusetts Bay model studied by 



Blumberg et al (1993) and Signell et al (2000) as an example.  The converted UnTRIM grid is 
shown in Figure 3.  
 
           A simulation of the tidal circulation in Massachusetts Bay represented by this grid was 
made.  The numerical model has 3002 polygons and 6304 sides on the top layer.  If 25 vertical 
layers are used with their layer thickness varies from 4 x 1 m, 3 x 2 m, 5 x 4 m, 1 x 6 m, 1 x 10 
m, 2 x 12 m, 4 x 15 m, and 5 x 20 m, the resulting 3-dimensional grid has a total of 84045 faces; 
on each face a normal velocity is calculated.  The smallest length of the side is about 30 m, and 
the largest side is about 8000 m.  The simulation was run on a Pentium-4 (1.7 GHz CPU) 
personal computer.  For a 15 day simulation using ∆t = 900 second, and an M2 tide of 1.2 m 
amplitude specified on all open boundaries, the total CPU time required for this simulation is 
about 1600 second.  The purpose of this simulation is to evaluate the computational efficiency of 
UnTRIM, and no direct comparison was made with results from previous studies (Signell et al., 
2000).   
 
Generating Unstructured Grid for UnTRIM 
 
           Obviously, for UnTRIM, the model grid definition file is very different when compared to 
the regular mesh, finite-difference models.   Some aspects of the unstructured model grid are 
similar to those used in finite-element applications, therefore the literature in finite-element grid 
generation might be applicable and useful for grid generation in UnTRIM applications.  For the 
purposes of generating input files to an UnTRIM model, a commercial product for mesh 
generation, “Argus”1, has been adopted.  This package is designed for mesh generations in 
connection with general finite element computations.  The outputs from “Argus” cannot be used 
directly in UnTRIM, because substantial additional information is needed by UnTRIM. 
      
         For any hydrodynamic modeling study of flows and circulation in estuaries or coastal seas, 
a proper computational mesh representing the basin is essential.  The water depths either at the 
nodes or on the side of computational cells must be extracted from a bathymetry data file in 
which the water depth z is given as a function of (x,y), or z = -h(x,y).  The domain of interest is 
defined by the definition of shoreline contours.  Based on the given shoreline contours and 
bathymetry data, a set of either triangular or quadrilateral polygons can be generated quite easily 
using “Argus.”  There are numerous functions built-in “Argus” allowing users to control the 
desirable mesh properties (at least to some extent) to optimize the grid size and mesh 
distributions.  The mesh density and grid distribution can also be controlled within “Argus” by 
user specified control functions to determine the mesh density.  However, there is no guarantee 
that the generated meshes are orthogonal.  The basic grid-mesh file generated by “Argus” 
includes the definition of nodal locations, definition of polygons, connectivities of polygons, and 
the water depths at nodes or at the center of each side.  The basic grid-mesh file is treated as an 
interim file for building the input grid-file to UnTRIM.  A model grid interface program (fortran 
based) has been developed to generate UnTRIM model input file that meets the requirements of 
the model.  If the study considers an area that is very large and/or complex, the grid generation 
project can be broken up into many sub-regions.  An appropriate grid-mesh for each sub-region 
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is generated first as an independent task.  The model grid interface program also has the 
capability of melting (combining) grid-meshes of sub-regions into an UnTRIM grid-file for the 
overall project.   During the process of combining grid-mesh of sub-regions, the triangles with 
their centers outside of the triangle are identified.  Since the UnTRIM model code accepts the 
combination of 3- and 4-sided polygons, attempts are made to ‘melt’ two triangles whose centers 
are outside or nearly outside into a 4-sided polygon for which its center is well defined within 
the polygon.  While melting two 3-sided triangles into a 4-sided polygon may not always be 
possible, there remain a handful of triangles that may not meet the orthogonality conditions.  
Roughly, there are less than 0.1% such triangles, and most of them are boundary polygons that 
have less impact on the computed results.  If necessary, it will be possible to go back to “Argus” 
to locate these polygons, and then to correct the grid geometry in these conditions.  Finally, the 
interface program reorders the polygon numbers so that the open boundary polygons will appear 
in a sequential order at the beginning of the input grid-file.   
 
       The model mesh for Suisun Bay, a part of the San Francisco Bay estuary, California consists 
of 3279 nodes, 4911 polygons, and 8199 sides on the top layer.  Twenty-five (25) vertical layers 
are specified with the layer thickness varying from 1 m in the top 20 layers, 2 m for the next 5 
layers (Figure 4a).  The resulting grid has a total of 62K faces; on each face a normal velocity is 
calculated.  The smallest length of the side is about 45 m, and the largest side is about 800 m.  In 
addition, the fine triangular mesh within the narrow channels can be replaced by long and narrow 
rectangular channel polygons (Figure 4b), with the same 25 vertical layers, the total number of 
face velocities is reduced to about 49K, or approximately 20% fewer velocities.  For an identical 
simulation, the required CPU time is proportionally reduced by about 20% because there are 
20% fewer faces due to the introduction of channel polygons.   Some simulated tidal current 
patterns near a tidal channel are shown in Figure 5.  The reduction in the total number of velocity 
points implies savings in CPU time.  
 
                                     (a)                                                                         (b) 

    
 

Figure 4. (a) An unstructured grid representing Suisun Bay, a part of San Francisco 
Bay, California.  (b) The typical two rows of polygons in narrow channels are 
replaced by long and narrow rectangular polygons where the flow is expected to be  
bi-directional. 

 



          
 

Figure 5.  Simulated tidal current patterns near a tidal channel, the reduction in the 
total number of velocity points implies savings in CPU time.  
 

Validation of UnTRIM 
 
        As the first step in evaluating and validating a new model, the simplest situations are 
considered.  Specifically, in a tidal basin, the initial condition is set so that the water in the basin 
is stationary and at open boundaries, zero forcing is specified.  In a long time-dependent 
simulation, the water body should remain stationary.  Furthermore, if a stable stratification is 
present and no forcing is specified on open boundaries, again the water body should remain 
stationary.  These exercises were performed using UnTRIM, and indeed, in a 15 days simulation, 
no detectable motions were found in the water body.     
 
Comparisons between TRIM classic and UnTRIM 
 
           The next example considers a structured finite-difference grid mesh for the entire San 
Francisco Bay using ∆x = ∆y = 200 m, which is converted to an ‘unstructured’ grid resulting in 
48506 nodes, 45841 polygons, 94374 sides on the top layer of a 42 layers model (Cheng and 
Smith, 1998, 2000).  In a finite-difference grid, once a grid size is chosen, the same grid size is 
used for the entire domain.     
 
          Figure 6 (a) shows the finite difference grid for San Francisco Bay, California.  In this 
study, although the interest is on tidal circulation in the bay, one must take the open boundary 
conditions some 15 kilometers west from the coast to properly simulate the processes near the 
Golden Gate region, the narrow entrance to the bay.  An unnecessarily fine grid is used in the 
open ocean where the focus of interest is not there.  The total number of face velocities is about 
1.160 million.  For a 72 hours simulation with ∆t = 180 sec, it requires 5.26 hours CPU time on a 
1.7 GHz PC, or a simulation time and CPU time ratio R = 13.7.    
 
          If an unstructured grid is used to represent the same area of the bay, very fine grids are 
used in areas of interest and in areas where high velocity and velocity gradients are expected.  In 
other areas, the grid sizes are gradually increased from very fine grids to very coarse grids, for 
example in the Pacific Ocean.  Figure 6 (b) shows such a grid, that gives 12682 nodes, 20126 



polygons and 32827 sides on the top layer of a 42 layers, and a total of 295 K faces for the 
model.  For 72  hours  simulation  with  the  same  time step (180 seconds), it requires 1.33 hours  
                                                                               (a) 

            
 

(b)    (c)  
 

Figure 6 (a) A 200 m finite-difference mesh of San Francisco Bay, California, (b) An 
unstructured grid-mesh in which very fine grids are used in areas of interest and in 
areas where high velocity gradients are expected, relatively coarse grids are used in 
other areas, (c) A snap shot of the simulated velocity distribution near the entrance of 
San Francisco Bay, California. 

 
CPU time (R= 54) on a 1.7 GHz PC. In these simulations, the required CPU time is roughly 
proportional to the total number of face velocities.  A qualitative snap shot of the tidal current 
distribution near the entrance region of San Francisco Bay is shown in Figure 6(c).  Time-series 
records of these two identical simulations using structured and unstructured grids are compared 
in Figure 7.  Although some small differences exist, possibly due to the difference in grid 



resolution, general agreements are achieved between these two cases.  In fact, the side lengths of 
the polygons in the region near Golden Gate is on the order of 50 m and 100 m for the 
unstructured grid, while the finite difference grid has a side length of 200 m. 
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Figure 7.  The time series of five days simulation using the structured and 
unstructured grids, recorded at a station near the entrance region of San Francisco 
Bay.  The panels from the top is the depth-averaged salinity, sea-level, depth 
averaged tidal speed, and tidal current direction.  Clearly these results are nearly 
identical, the slight difference is possibly due to the difference in grid resolution. 
 

Discussion and Conclusion   
 
         The numerical algorithm used in the UnTRIM model is relatively simple, yet general and 
robust.  It not only preserves the numerical properties of the semi-implicit finite-difference 
formulation and the desirable numerical stability and robustness, the unstructured grid used in 
the sense of a finite-volume method allows an arbitrary local grid refinement to meet the needs 
of resolving fine spatial resolution in complex regions while keeping relatively coarse spatial 
resolution in areas of less importance.  From a practical point of view, UnTRIM has achieved 
both robustness in numerical properties and flexibilities in physical space that are important in 
numerical modeling of complicated environmental hydrodynamic problems.  The mathematical 
formulation suggests that the unstructured polygons can be of any number of sides.  In the 
present computer code, mixed 3- and 4-sided polygons are used.  The essential properties of the 
algorithm concerning mass conservation, numerical accuracy, stability and generality are 
summarized below.  
 



a) Mass Conservation -- In the present scheme the local and global mass conservation is 
guaranteed because the finite volume form is used in discretizing the incompressibility 
condition (mass conservation equation) and the free-surface equation.   

 
b) Reduction to Uniform Mesh -- If the horizontal polygons are uniform rectangles, this 

algorithm is identical to the semi-implicit finite-difference scheme presented by Casulli and 
Cheng (1992) and Casulli and Cattani (1994).  The highest numerical accuracy is obtained 
when a uniform grid, such as equilateral triangles or uniform rectangles, is used.  In these 
cases, the discretization error for the gravity wave terms is second order in space.  

 
c) Numerical Stability Properties -- For barotropic flows, the stability analysis of the semi-

implicit finite difference method has been carried out by Casulli and Cattani (1994) on a 
uniform rectangular grid and under the assumptions that the governing differential 
equations are linear, with constant coefficients and defined on an infinite horizontal 
domain, or with periodic boundary conditions on a finite domain. The analysis shows that 
the method is stable in the von Neumann sense if a θ-method is used with ½ ≤ θ ≤ 1 and if 
the operator used to discretize the advection and horizontal friction terms is itself stable. 
Computational results on several test cases have indicated that no additional stability 
restrictions are required when a non-uniform unstructured mesh is used.  The stability of 
the present algorithm is independent of the celerity, wind stress, vertical viscosity and 
bottom friction.  It does depend on the discretization of the advection and horizontal 
friction terms. When an Eulerian--Lagrangian method is used for the explicit terms, a mild 
limitation on the time step depends on the horizontal viscosity coefficient and on the 
smallest polygon size. This method becomes unconditionally stable when the horizontal 
friction terms are neglected.  

 
d) Baroclinic Flows -- When the baroclinic flows are considered, the solute transport equation is 

coupled to the momentum equations through the baroclinic forcing terms.  When the semi-
implicit finite-difference scheme is used to solve the governing system of equations, the 
baroclinic forcing terms are treated explicitly.  More precisely, the solute transport 
equation is solved lagging by one time step.  This treatment of the baroclinic forcing 
introduces a mild numerical stability constraint due to the presence of internal waves.  A 
Courant-Friedrich-Lewy (C-F-L) stability condition based on internal wave speed limits 
the size of time-step in the integration.  Properties of internal wave depend upon the degree 
of stratification in the water column.  It is reasonable to estimate that the internal wave 
speed is lower than the surface gravity wave speed (celerity) by a factor (∆ρ/ρ)1/2, thus, the 
internal wave C-F-L stability limit exists, and clearly, this stability constrain is not 
desirable.  Fortunately, the stability condition is an order of magnitude less stringent than 
the stability condition due to gravity waves. 

 
e) Degeneration to 2D and 1D Domains -- The structure of the numerical algorithm is such that 

if only one vertical layer is specified, the numerical model is reduced to 2D.  If a long and 
narrow polygon is used to represent a channel, this section of the model could be a vertical 
2D model, or an 1D model if only one layer is used.   

 



f) Flooding and Drying of Sub-regions -- The present algorithm allows for the simulation of 
flooding and drying of low lying areas in a straightforward manner since the finite volume 
scheme is used for discretizing the mass conservation equation.   

 
g) New Flexibilities and New Challenges – The unstructured grids used in the computation has 

the obvious advantages that allows the grids to be boundary fitting and allows an arbitrary 
local grid refinement to meet the needs of resolving fine spatial resolution in some 
numerical modeling tasks.  Although methods and literature exist to assist model grid 
generation, the process of model grid generation can be a complicated task.  The new 
modeling flexibility is facing new challenges associated with issues of grid generation.  In 
order to take full advantage of these new model flexibilities, the model grid generation 
should be guided by insights into the physics of the problems; and the needed insights may 
require a higher degree of modeling skill.   
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