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General Viewpoint of Numerical Modeling
of Environmental Flows
Scales: Physical Properties or
Physical Processes

Spatial (m) and Temporal (sec)
('29 '1) ('19 09 2)

10 10

(> 6) (>7)

10 10
Need the Right Model to represent the proper

physical properties and to resolve the physical
processes of the environmental problem




Considerations in Formulating a
Numerical Algorithm for a Model

Desirable Properties of a Numerical Model:
1. Stability

2. Accuracy (Require compromise)
3. Efficiency

Numerical Algorithm 4

From PDE to Discrete Algebraic System:
Spatial discretization:

Finite difference, Finite Element, Finite Volume
Temporal discretization:

Explicit scheme, Implicit scheme, Semi-implicit




An Overview
The TRIM Family of Models
From TRIM to UnTRIM

» Solution of Shallow Water Equations, 3D

» Transient, Mulit-Dimensional (3D, 2D, 1D)

> Simultaneous Solution of Transport Variables
» Semi-implicit Finite-Difference Method

» Boundary Fitting Unstructured Grid Mesh



Applications and Potential Applications
in Surface Water Hydraulics

» Flows in Bays and Estuaries
San Francisco Bay and Delta (TRIM Classic and

UnTRIM) Chesapeake Bay (VIMS)
Delaware Bay (Drexel Univ.)

» Multi-Dimensional Flood Routing
» Studies of Bridge Crossing and Scouring

» Floodplain Inundation Mapping and Real-Time
Flood Warning

» Wind-driven Circulation in Lakes
» Basic Flow Field for Transport Processes
Eutrophication and WQ Modeling



—
Numerical Foundation of PRIM (Background)

Casulli, V., 1990, Finite-difference Methods for the Two-
dimensional Shallow Water Equations, J. Comput. Phys., V. 86, p. 56-74.

Desirable Properties of a Numerical Model:
1. Stability 2. Accuracy 3. Efficiency
(Compromise)

Stability Analysis: Gravity wave terms and velocities in
Continuity Eq. control the numerical stability

Method of Solution:

1. Treat those terms implicitly, and the remaining terms
explicitly.

Substituting momentum Egs. into continuity Eq.,
resulting a matrix equation that determines the water
surface of the entire domain.




2D Depth-Averaged Shallow Water Equations

Continuity Eq.: +§[(h+§) ]+5[(h+§) ]:O
ox oy

X-Momentum Eq.:
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X-Momentum Eq.:
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Substituting the momemtum Equations into

Continuity Eq.: +§[(h+§) ]+5[(h+§) ]:O
ox oy

(1+ Ay, + By, + Gy + Dy )G
—A gn+1 —B n+1 n+1 n+1 :En

i+1,j2i+l,j i— ljg ] e o l]+lgl A AT i,j—lgi,j—l L,J

With all coefficients are positive.

The governing matrix equation is symmetric,
diagonally dominant, and positive definite. Numerical

solution is achieved by a preconditioned conjugate
sradient method.



Some Numerical'Properties
Convective terms- Eulerian-Lagrangian method used
Gravity wave terms - unconditionally stable

Discretized equation - properly accounts for positive
and zero depths

Wetting and drying of cells are treated correctly

Pentadiagonal solution matrix - solved efficiently by
preconditioned conjugate gradient method

TRIM2D successtfully implemented to reproduce
sharp hydrographs of riverine flows and for estuaries

The model is robust and efficient

TRIM 2D: Extensive applications in San Francisco Bay

Cheng, R. T., V. Casulli, and J. W. Gartner, 1993, Tidal, residual, intertidal
mudflat (TRIM) model and its applications to San Francisco Bay, California,
Estuarine, Coastal, and Shelf Science, Vol. 36, p. 235-280.



What does TRIM model stand for?
TRIM stands for Tidal, Residual, Inter-tidal Mudflat

TRIM also implies simple and elegant in numerical
algorithm and model code, a goal that we are striving
for!

From TRIM Series of Models to UnTRIM



Systematic Development.of TRIM Models:

TRIM_3D: Applications in San Francisco Bay and others

Casulli, V. and R. T. Cheng, 1992, Inter. J. for Numer. Methods in Fluids

Casulli, V. and E. Cattani, 1994, Comput. Math. Appl., Stability, accuracy
and efficiency analysis of TRIM_ 3D, 0-method for time-difference

Cheng, R. T. and V. Casulli, 1996, Modeling the Periodic Stratification and
Gravitational Circulation in San Francisco Bay, ECM-4.

TRIM_3D: Non-hydrostatic
Casulli, V. and G. S. Stelling, 1996, ECM-4
Casulli, V. and G. S. Stelling, 1998, ASCE, J. of Hydr. Eng

UnTRIM model:

Casulli, V. and P. Zanolli, 1998, A Three-dimensional Semi-implicit
Algorithm for Environmental Flows on Unstructured Grids, Proc. of Conf.
On Num. Methods for Fluid Dynamics, University of Oxford.




Extension to Unstructured GHG'WGL -- UnTRIM

TRIM Modeling Philosophy:

. Semi-implicit Finite-Difference Methods

. ©O-Method for time difference

. Solutions in Physical Space, regular mesh, no
coordinate transformations in x-, y-, or z-directions

. In complicated domain, refine grid resolution if
necessary

. Pursue computational efficiency and robustness

UnTRIM (Unstructured Grid TRIM model) follows the
SAME TRIM modeling philosophy, except the finite-
difference cells are boundary fitting unstructured polygons!




Numerical Algorithm for UnFRIM™ _

Governing equations (Hydrostatic Assumpfion)

Continuity and Free-surface Equations

Incompressibility

° -
57 +Ve |:j de:| =0 Free-surface equation

N
Horizontal Momentum Equation in  ;direction for velocity /.

J

> >0 O o ¢ g 0% '
oy~ VXV )eN,= Z(Vva—ZV,-) +v, V27— 8N, —;—j(/?—/%)ﬁk

where Vx() is cross product, V() is inner product, V2 () is the Laplacian,

N
and J/ is the velocity in the horizontal plane.

Transport Equations

Dot ki KVIC =123 .. Laseed one time-st
Dt 1 oz (Kvaz j) h i 1=12,5 ... Lagged one time-step

And an equation of State



UnTRIM model:

Casulli, V. and P. Zanolli, 1998, A Three-dimensional Semi-implicit Algorithm for Environmental
Flows on Unstructured Grids, Proc. of Conf. On Num. Methods for Fluid Dynamics, University of
Oxford.

Casulli, V., and R. A. Walters, 2000, An unstructured grid, three-dimensional model based on the
shallow water equations, Inter. J. for Num. Methods in Fluids, Vol. 32, p. 331-348.

Orthogonal unstructured grids




1. Semi-implicit finite-difference of momentum Eq.
in the normal direction to each face is applied!

2. Applied the Finite-Volume integration of the

free surface equation!
Local and global conservation of volume is guaranteed!

/

3. The resultant matrix equation determines the
water surface elevation for the entire field.



1. Semi-implicit finite-difference of momentum Eq.
in the normal direction to each face is applied!

2. Applied the integration of the

free surface equation!
Local and global conservation of volume is guaranteed!

T /

—| O RS
i A

3. The resultant matrix equation determines the
water surface elevation for the entire field.



Summary of Numerical Algﬂ'r'fﬁ;nT_

Momentum Equation in N ; direction for velocity 7, relates

V; and C (left) and C (right) on each face of a polygon

Continuity and Free-surface Equations

O ° - -
}—o = %4 gS(dez)-dszo
—h

Finite Volume integration over each polygon =>
V’s are eliminated giving a Matrix Eq. for {

The continuity equation and the momentum equations are
truly coupled in the solution. No mode splitting is used!




Issues of unstructured grids

User must define:

1. Number and locations of nodes

2. Polygon number and its relation
with nodes (connectivity)

3. Each side is numbered, left and right
polygons are defined (connectivity)

4. Center coordinates of each polygon

5. Vertical layers are of constant thickn
(variable in z) except the bottom and
free-surface; a stack of prisms ﬂ

6. Water depth and normal velocity are p
defined on the sides

7. Water elevation is defined at the center
of the polygon




Features of Numerical Code:

Fortran 90/95, Fully Modular
Dynamic allocation of memory

Model Engine + User Interface Module

Full library of User supplies sub-models
“get” functions such as turbulence closure
Full library of all forcing functions and
“set” functions all source and sink terms
n-th level A :
UnTRIM set” Functions
Model Engine M “get” Functions

Model Results

Maximum Efficiency Ma'_ximum Flexibility
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Features of Numerical Codg;

USGS has purchased a site-license of UnTRIM

Model Engine  + User Interface Module

UnTRIM Balg User Interface
Model Engine PSS USGS3D(UnTRIM inside)

Developed by Casulli: Developed by users:

Managed and Maintained
by Casulli as quality (safety)
control

Allows Creativity in
numerical modeling
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Examples of Unstructured Grids " .

Conversion of regular grids
2. Orthogonal Curvilinear Grids are also Unstructured Grids

8550 nodes, 3160 polygons and 6601 sides on the top -layer.
25 layers, 80 K faces, At = 900, side length between 30 and 8000 m
15 days simulation requires 27 min (R= 800) CPU on 1.7 GHz PC



San Francisco Bay}_,Caaﬁfmm}. (Mixed Polygons)

(All Rectangles)

48506 nodes, 45841 polygons 12682 nodes, 20126 polygons
943774 sides on the top layer 32827 sides on the top layer

42 layers, At =180 42 layers, = At=180
72 hours simulation requires 5.26 72 hours simulation requires 1.33
hours (R=13.7) CPU hours (R= 54) CPU

on 1.7 GHz PC on 1.7 GHz PC



T
| 6-cells
: KN -
: %iﬁiii g :ﬁ“‘*""‘ 81,660 faces “Square Mesh
T - TRIM3D Classic

6-cells
56,260 faces

12-c_e_lls
215,800 faces
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Grid
6-square
12-square
24-square

Triangles

Model Statistics

Modeled Area: 4 km x 1.12 km
AXx =20 m (6-square), At = 150 sec
# of grids CPU time
56,260 ( 1.00) 455 s (7.6 m) (1.00)
215,800 (3.84) 23725 (39.6 m) | (5.21)
843,180 (14.99) 18726 s (312.1 m) (41.16)
81,660 (1.45) 786 (13.1 min) (1.73)
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Upper St. Clair River
" Example One

EXPLANATION

5210 Flow eseasurenent

Using Numerical Model to
Estimate the Volumetric
Transport of Water from
Lake Huron to Lake St.
Clair

To compare the model
results with 3D ADCP data

: 'I--' | Gombra

el ]

Project Chief:
David J. Holtslag
Michigan District




Modeled Area:

6 km x 22 km
20 layers
12997 sides
114,462 faces

E ¥ Station 6

[ Ry [} I N N | ) R

Station 2

Station 3

=10l x|
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Unstructured
Grid
Representation
of the River
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Statior

ation 2

Velocity > 2 m/sec

Simulated surface
velocity distribution
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3-D Velocity at Station 5
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Project: Water Transport in a Large River

Using a 3D UnTRIM Hydrodynamic
Numerical Model to Estimate the

Volumetric Transport of Water
from Lake Huron to Lake St. Clair



Project: Modeling Study of White .'River, Arkansas

Project: Jaysson Funkhouser and C. Shane Barks

e LS [
! T -

i
+ Study area (34 mi?) Encompasses <)/ ¥ Clareidon
parts of two National Wildlife = -
Refuges

* Floodplain Inundation Mapping
* Backwater and Velocity concerns

 Provide Inputs to Highway
Bridge Design and Placement

 Highway Bridge Scouring

Rail Road Bridge

Approximate Area Modeled



Defining the River.Basin
Dlgltal Elevatlon Model (DEM)

10-Meter DEM data obtained from USGS
Mapping Division in Rolla, MO

Funkhouser




Additional Survey Data

Funkhouser




DEM Verification

Most Downstream Cross Section

200.00
— Surveyed
— DEM
<=7
o
w= 180.00
= Average Survey = 163.00
S Average DEM = 162.57
2
S
o 160.00
L
140.00
0 5000 10000 15000 20000 25000

Distance Across Floodplain, L to R, in feet
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Hydrograph and time-series of a simulated flood
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% white River, Arkansas near HWY 79 -0 ﬁ

Normal Flow in White River

Run UnTRIM

Clarendon

Dry Area




Run UnTRIM
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Run UnTRIM




The UnTRIM model has been used to study:

Flows near two National Wildlife Refuges
during flood

Floodplain Inundation Mapping
Backwater and Velocity concerns

Provide Inputs to Highway Bridge Design
and Placement

Highway Bridge Scouring



Preliminary Modeling Results of
Hydrodynamics
in Upper Klamath Lake

Ralph T. Cheng*
Jeffrey W. Gartner®
Tamara Wood**

*U. S. Geological Survey, Menlo Park; CA
**U. S. Geological Survey, Portland, OR



I. Background

I11. ADCP Deployment and Results
II1. Time-series of Wind Observations
IV. Wind-Driven Circulation

V. Reproducing ADCP Observations
V1. Analyze This and Analyze That
VII. Conclusion (Physics Rules!)






What is an ADCP and howdoes it work?

Conventional
current meter

Figure 1.15. Analogy of a conventional current-meter string to an
acoustic Doppler current profiler (ADCP) profile.




West ADCP Station:
Water depth ~ 8 m

Bin size = 0.2 m
Sampling rate = 30.0 min

Total bins = 34

- Ny

—

East ADCP Station:
Water def)tl_l ~35m

Bin size = 0.2 m
Sampling rate = 30.0 min

Total bins = 12



Unfiltered 3D ADCP Time=Series.
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Filtered 3D ADCP
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Wind Speed and Direction Time-Series
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Universal Paucity-of Field Data
Answer (?)

Numerical Model as a Tool for Spatial and
Temporal Interpolations

The UnTRIM Model

Unstructured grid, 3D, Transient, Variable
Density, Transport of Solutes

Turbulence Closure

Semi-implicit Finite-Difference Method

A Robust and Efficient Model



Unstructured
Grid Model:
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Simulations using the observed wind data

_

Issues with wind time-series:
1. Magnetic north [RRINAG
2. Data gaps or irregular time interyals

] I.l|':.' .



Observations at Beep (West) Station
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Model Results vs.
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Model Results vs.
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| East Station: Good News and'Bad News: Why??2?
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East Station: Modeled velocity responded to diurnal wind pattern
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Take Home Message:

Field Data Do not Necessarily Represent
the Truth.

Recommendations:

Interpretation of Field Data Must be
Consistent with the Correct Physics!

There might be uncertainties or hidden
message in the data!



Receipt for successful modeling:

1. Numerical Modeling and Physical Processes
complement each other and thus must be
considered together.

2. Choose the right numerical algorithm for the
Physical Processes of the environmental flow
problem (better chance of success)!

3. The ranges of spatial and temporal scales of
environmental flow problems are very broad.
Therefore, I do not believe that there exists a
single model that can solve all environmental
flow problems.



Summary: Properties of UnTRIM

Mass Conservation
(local and global)

Conversion from uniform and regular meshes

CPU time is directly proportional to # of face velocities.

Numerical Stability Properties

Unconditionally stable for barotropic flows without
horizontal dispersion

Baroclinic Flows

Internal wave speed controls the CFL stability condition

Degeneration to 2D and 1D domains
Flooding and Drying of sub-regions



Discussion:

UnTRIM model using unstructured grids preserves
the numerical properties of semi-implicit finite-
difference methods.

Unstructured grids allow local grid refinements as
needed, the CPU time requirement is directly
proportional to the number of “faces.”

New modeling flexibility leads to new challenges:
To take full advantage of the new flexibilities, the
model grid generation should be guided by insights
of the processes.

The needed insights may require a higher degree of
modeling skill.



Conclusion

e An Unstructured Grid UnTRIM Model
is available at the USGS

* Both pre- and post-processing programs have
been developed

* Previous applications have shown that the
UnTRIM model is numerically robust and
computationally efficient.

* The UnTRIM Model is suitable for simulations
of multidimensional, transient flows In
rivers, estuaries, and lakes
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